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The motion of one-dimensional piston in a quiescent polytropic gas is con - 
sidered. Approximate definition is obtained for the shock wave and the flow 
of gas behind the wave. This paper is related to [l]. 

1, We assume that a quiescent polytropic gas of density P = Pt (~1 and 
entropy S = S+ (5) whose equation of stateis P = P’S lies to the right of a flat 
piston, and that P+ (5) and S+ (x) are analytic functions. 

At instant of time t = 0 the piston begins to moveinconformity withthelaw 

5 (t) = E1t -I- Ed2 -t . . . + EilP, El > 0 

A shock wave propagates through the gas. 
We seek the shock wave definition of the form 

5 = c,t + $12 + . . . -t c,P (1.1) 

The problem reduces to the determination of ~1, . - -, CVI in conformity 
with the given law of piston motion and the flow field between the shock wave and the 
piston. We shall show the feasibility of consecutive unique determination of cl,. . ., C, 
for any n . For the definition of flow between the piston and the shock wave for 
small t we use the series 

U=k;ouk(t)~k(Z,t), P=k~opk(t)~k(x,t) 
s = ,YJ Sk (0 cp” (5, t) ((p (2, t) = 5 - c,t - . . . - cnP) 

k=o 

(1.2) 

These series differ from those in [I] by that cp (2, t) = 0 is not a characteristic and 

from Kowalewska’s series [Z] by that the function q (2, t) is not a priori known. 
The procedure for the determination of coefficients cl, . . ., c, and of the 

flow field is as follows. First, we represent coefficients ul~, Pk, and St, (k = 0, . . . , 

n - 1) of series (1.2) as functions of ck (k = 1, . . ., n) with the latter determined by 
the specified conditions at the piston. Having determined Ck (k = 1, . . ., n) we obtain 

uk> Pk, and Sk (k = 0, . . ., n - 1). 
‘The efficacity of this procedure will be shown on an example. 
The proposed formulas may be used for determining the gas flow initial stage 

with subsequent application of difference methods. 
We pass to detailed exposition. 
The flow of gas between the piston and the shock wave satisfies the system 

equations of gasdynamics 
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(1.3) 

We seek the solution of system (1.3 ) in the form of series (1.2 1 in which 
uo* PO9 and S, are determined by the Hugoniot conditions [3] 

u,=(l-_-h)C,,(M,-&), h’$$. M,-$- 

PO = P+Mo2 [(I - h) + hM,‘T1 

so = M,-2ys+ \(i + h)M,a - hl I( 1 - h) + hM,T 
where c,, is the speed of sound in the quiescent gas and D is the shock wave 
velocity. 

We substitute series (1.2 ) into system (1.3 ) and equate to zero the coefficients 
at powers of ‘P. Coefficients W, Pk, and Sk (k = 1, . . . ) are functions of 
cl, . ,. -, cn and are determined successively as solutions of the system of linear alge - 

braic equations with the determinant 

‘p;+uo P, 0 

A = det ypie2So qt’ -j- u. pi-’ 

0 0 ‘pt’ i- ug 

Direct calculations show that when ck # 00 (k = 2, . . ., n) the determinant 
A is positive in the neighborhood of point {t = 0, z = 0) , since c, determined 

by the condition u. (0) = E1 is of the form 

51 
cl = 2 (1 - h) i- [k (*? /g2 + co2 w-J’* 

The condition u fs (t), r) =& I at (CC (t) is the law of motion of the piston ) is 
satisfied at the piston, 

Differentiating the last equality with respect to t, we obtain a system of 
equations 

di-1 
7 u @ w, $1 

dP1 
f==o 

= il4j 

that can be used for successive determination of all q . 

Substi~~g series (l. 2) for u into the the j-1 th equation, we obtain 

Yh..., 'j-1) It=0 = I! Ej 

where (Y (c,, . . ., ~j_~) is a known function. 
It can be shown that the coefficient at cj in the expression ug (4 (rpf’ (0, O))k 

is of the form 4&(k+1’, where dk is some positive constant. The coefficient 

at cj in the considered equation is consequently positive. All Cj are uniquely de - 

termined _ 
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Let us now consider the case of n=2 and cp==x -cc,l -rrzt2. Wehave 

Ur (0) = 
[ 

au, vu i)P” (0) 
(160 (0) -- Cl) t- YJ’, (0) pay-l(o) at i- -- a1 

v pi-1 (O)] [(Q (0) - c*)P - ys, (0) pyo-r (0)1-r 

(1.4) 

The derivatives in the expression for ur (0) may be represented in the form 

au, aP0 
at (0) z fir + brc.z, 7 (0) = a, I- b,c, 

3 (0) = a3 + b,c, 

Expressions for constants ai and bi (i-l 1, 23) are not shown owing to their 
unwieldiness. Note that when density p+ is constant, parameters al, u2, and a3 

vanish. Let us determine cz . The condition at the piston implies 

2%, = @D, (0) i- QD, (0) cz 

@I (0) = f (a,, “2, a,), 0’~ (0) = t (b,, b,, b3) 

f (X9 Y, Z) = X -!- [(Cl -- U. (0)) 5 -i- YS, (0)p,,y-2 (0)y + 

PoY-l (0) 21 (43 (0) - q)[(uo (0) - cJ2 - ypoY-l (0) s, (0,1-l 

Since QD, (0) > 0, c2 can be determined by formula 

2&z - CD1 (0) 
(1.5) 

c2 = 
@? (0) 

which makes it possible to find some conclusions about the properties of the flow of gas 
behind the shock wave. 

When the gas density P+ is constant, the shock wave is accelerated at the ini- 

tial instant t = C only if Ez + 0 , and the direction of acceleration is determined 

by the sign of %z. In the case of distributed density the shock wave is accelerated 
when %, = 0. The dependence of acceleration on initial data is complex. Since 

DI (0) is independent of %D hence setting Ez = r/@, (0) we obtain c2 = 0. 

Although the acceleration of the piston at t = 0 is nonzero, that of the shock wave 

is zero. 
Let us determine what happens to the shock wave when %r - 0. By the Hugo- 

niot condition cl (Er) -+ C, (0) when %r + 0. Let us determine the lim c% (W when 

%I - 0 using formula ( 1.5 ) . Calculations show that then 
ac, 

ur--zC,(U)a5(0)(1--h), b,-+2(1--h) 

Hence 

GJa + YP+ Y---1S+ zzz vp+-‘, yS,p”Y-suz + a3p,Y-1 - 0 

S,o,Y-2b, +- b3p,Y-1 + 0, (uO - cr)Z - ypoY-ls, - 0 

Note that C, (0) is the velocity and C, (0) 8 C, (0) / do is the acceleration 
of a weak discontinuity at the initial instant. Thus in the considered approximation 

the shock wave degenerates into a weak discontinuity. 
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We shall show that in this case the flow of gas behind the shock wave may be 
defined by the solution of the problem with a weak discontinuity Cl], i. e. 

$ (0,O) --+ +- ( + (0, 0) + 2& k+ 0 

The conditions at the piston imply that 

au” (0) %.a = at + Ul (0) (uo (0) - Cl) 

and from fromula (1,4) we have 

au (090) 
= z+(O)= 

2& - aull(O) I ar 2E2 
t?X UOP) -cl --qyy El- 0 

au (0,O) au,(o) 

at = - - U] (0) Cl --) 2Ez, at 41 --f 0 

Example. Let the piston motion be defined by 5 = tot + 5r2 and P+ = 
s, = 1, U+ = 0, and P = p2S . We seek a solution of the shock wave of the form 
I = c,t + c,ta. After necessary calculations we obtain the following law of shock 

wave motion 
z = 15.132t + 4.24ita (1.6) 

Solution (1.6 ) was compared with that obtained for the same example by the 
difference method up to time t = 0.5. The discrepancies were found to be less than 

0.1% for t < 0.3 , and less than 1% for 0.3 < t < 0.5 . 
2. So far only plane one-dimensional motion of the piston was considered. Let 

us now consider cylindrical and spherical motions of the piston in addition to its plane 

motion. The first of equations of system (1.3 ) is now replaced by 

$-+*++ =o 

where v = 0 relates to plane motion, v = 1 to cyndrical and v = 2 to spherical 
motions. 

Let the piston motion be defined by the formula 

z = 50 $ Ert + . . . + w 

where x0 and Ei (i = 1, . . . , n) are constants, and z. > 0 and E1 > 0 (in Sect. 
1 50 = 0). 

We seek the shock wave definition in the form 5 = 20 i- crt + . . . + c,tn,and 
that of the flow of gas between the piston and the shock wave in the form of series 

P = PO U) + kjl PI, (27 9 (Pl’ ($9 t) (2.1) 

k=l 

s = ‘0 tt) + 5 Sk cx, t, qk tx, t, 
k=l 

(cp = 5 - x0 - c,t - . . . - cnP) 
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where values of p, % and S at the shock wave are denoted by subscript 0. 
Series (2.1) differ from series (1.2) by that in the former coefficients PC, q, 

and Sk(k=l,.. .) depend not only on t, but also on I. Parameters cl, . . ., 

%I, Pr, IQ, and 4!?k (k = 1, . . . ) are determined in exactly the same way as in the 
plane case. 

Exam p 1 e , Let us assume that the parameters of gas in which the piston is 

moving are : p+ = S, = 1 and P = pas (Y = 2) and that the shock wave generated 
by it is strong. Then, after necessary calculations, for the coefficients cl and cz 

we obtain the following formulas : 

Cl = 1.5 51, Ca = 0.75 (Es - 0.75y$,s) 
(2.2) 

which shows that the propagation of the spherical wave (Y = 2) is the slowest. 

In concluding the author thanks A. F. Sidorov for guidance and assistance. 
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